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ABSTRACT
This study explores the application of an artificial bee colony (ABC) to locate partial discharge (PD) 
in a test tank based on acoustic emission (AE) approach. Data from a previous AE PD experimental 
study, which includes the coordinates of 3 AE sensors and the time difference of arrival (TDOA), 
were used to construct the nonlinear localization equations. It is known that localization algorithms 
are among the factors that can affect PD localization accuracy, and the ongoing research in this area 
underscores the need for further advancements in this topic. Therefore, the ABC was proposed to 
estimate the PD location through a colony of 120 bees, evenly divided into 60 employed and 60 
onlooker bees. The employed bees explored the bounded search space, and onlooker bees refined 
PD locations found by the employed bees through local search. Scout bees were set out whenever 
a bee exceeded the limit of abandonment to discover possible PD locations in new areas of the 
search space. After 500 iterations, the optimal solution was the estimated PD location produced by 
ABC. Comparisons with the genetic algorithm (GA), particle swarm optimization (PSO) and bat 
algorithm (BA) revealed that the distance error, maximum deviation and computation time for AE PD 

localization based on ABC are the lowest. The 
study concludes that the ABC is more suitable 
for the multi-variable PD localization task than 
the GA, PSO, and BA due to its effective balance 
between local search by onlooker bees and 
global exploration by scout bees.

Keywords: Acoustic emission, artificial bee colony, 
localization, partial discharge, time difference of 

arrival 
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INTRODUCTION

Partial discharge (PD) can affect the integrity of power transformers since it can gradually 
deteriorate dielectric insulation and potentially lead to failure over time (Ilkhechi & Samimi, 
2021; Liu, 2016). Therefore, PD detection and localization are crucial to maintain the 
reliability of power transformers (Wang et al., 2017). Conventional electrical measurement 
based on IEC 60270, ultra-high frequency (UHF), acoustic emission (AE) and dissolved 
gas analysis (DGA) are well-known methods for PD detection. PD in the insulation of a 
transformer results in various physical phenomena such as high-frequency electric current 
pulses, electromagnetic (EM) wave emissions, mechanical vibrations, chemical reactions 
and liberation of heat and light energies (Rathod et al., 2022). Mechanical vibrations 
generate AE signals, typically covering frequencies ranging from 20 kHz to 1 MHz (Rathod 
et al., 2022). These AE signals can be detected, denoised, and used to estimate the PD 
location through localization equations (Liu & Liu, 2014). 

AE-based PD localization has recently gained significant attention due to its non-
destructive nature (Liu, 2016). AE sensors, particularly the piezoelectric transducers, 
can be easily placed on the external walls of a transformer tank via magnetic holders 
(Hussain et al., 2021; Wang et al., 2017). AE is immune to electromagnetic interference 
and cost-effective (Faizol et al., 2023). However, AE is sensitive to external mechanical 
noise, which can introduce errors in PD localization (Al-Masri et al., 2016). It is known 
that the accuracy of AE PD localization relies on the localization algorithms (Liu, 2016). 
Iterative methods such as least square and Newton’s methods are previously utilized to 
solve the nonlinear equations inherent in the time difference of arrival (TDOA) method 
for PD localization (Howells & Norton, 1981; Kundu et al., 2009; Punekar et al., 2012). 
These algorithms are computationally intensive and require initial guesses to perform PD 
localization (Howells & Norton, 1981; Kundu et al., 2009; Punekar et al., 2012). Non-
iterative algorithms proposed by Kundu et al. (2009) and Antony and Punekar (2018) can 
provide faster computation times than Newton’s method with generations of 2 solutions. 

Advanced approaches such as genetic algorithm (GA) are also implemented for AE 
PD localization (Veloso et al., 2006, 2007, 2008). GA can estimate the PD location without 
any initial guesses, but it can be subjected to complicated optimization issues related to 
premature convergence phenomena (Liu, 2016). A quantum GA (QGA) is introduced to 
improve the accuracy of AE PD localization with complex computation (Liu, 2016). The 
bat algorithm (BA) produced less error than the QGA and GA for AE PD localization 
(Chakravarthi et al., 2017). The particle swarm optimization (PSO) is also utilized for AE 
PD localization, whereby apparent reductions of PD localization errors are found compared 
to the least square algorithm (Ri-cheng et al., 2008; Tang et al., 2008). Hybrid differential 
evolution PSO (DE-PSO) can further enhance the accuracy of AE PD localization with 
a longer iteration time than PSO (Cai et al., 2020). The adaptive grey wolf optimizer is 
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known for its ability to adjust search parameters during optimization; it also shows promise 
in enhancing AE PD localization (Dudani & Chudasama, 2016). 

Despite these advancements, research on the algorithms for AE PD localization is 
still ongoing, which has prompted further study on this aspect (Dudani & Chudasama, 
2016). One key challenge is balancing exploration and exploitation in the search process 
to avoid premature convergence and enhance PD localization accuracy. The artificial bee 
colony (ABC) serves as a potential candidate to address this gap since it can effectively 
prevent premature convergence in multi-dimensional problems, such as AE PD localization 
(Karaboga & Akay, 2009). Therefore, this paper presents an investigation into the 
application of the ABC for AE PD localization. The study aims to explore the application 
of ABC for AE PD localization and comprehensively compare its performance against BA, 
GA, and PSO. The AE PD signals used in this study are collected through 3 AE sensors 
placed on the surface of a steel tank filled with mineral oil. The time of arrival (TOA) 
for each AE PD signal is determined through the first peak method from the denoised AE 
PD signals (Hashim et al., 2022; Sinaga et al., 2012). Next, the TDOAs between the 3 
AE signals are computed based on the TOAs. PD localizations are then carried out based 
on the ABC algorithm, and its performance in terms of distance error between the actual 
and estimated PD locations, maximum deviation of estimated PD location and average 
computation time is compared with BA, GA, and PSO.

METHODOLOGY

Experimental Setup and Mathematical Model of Acoustic Emission PD Localization

This study’s experimental setup and data were based on the previous study (Hashim et al., 
2022, 2023, 2023b). The nonlinear localization equations employed in this investigation 
were formulated based on the configuration shown in Figure 1, which comprised a PD 
source and 3 AE sensors mounted on the walls of the test tank. The spatial Cartesian 
coordinate system was established with one of the bottom corners of the test tank serving 
as the reference point, known as the origin O (0, 0, 0). The actual PD location is represented 
by the coordinates P coordinates P (𝑥𝑥,𝑦𝑦, 𝑧𝑧),  , while the positions of the 3 AE sensors S1, S2, and S3 are 
denoted by by , , , by , , , and and (𝑥𝑥3,𝑦𝑦3, 𝑧𝑧3).  . The needle and plane electrodes 
were used to create PD at 2 distinct locations in the test tank: PD location A (0.07, 0.08, 
0.18 m) and PD location B (0.32, 0.09, 0.08 m), respectively. The TDOA was employed 
for PD localization to avoid the need to determine the actual time of arrival for the AE PD 
signals at each of the sensors (Liu, 2016). S1 was specified as the reference sensor. The 
time difference in receiving the AE PD signals between sensor S1 and sensor S2, , 𝜏𝜏12,  , was 
defined as as 𝑡𝑡1 − 𝑡𝑡2, as  , as depicted in Figure 2. Similarly, the difference between the arrival 
times of the AE PD signal at sensors S1 and S3 was defined as the TDOA between the 2 
sensors, 𝜏𝜏13 , which was mathematically expressed as as 𝑡𝑡1 − 𝑡𝑡3.  . 
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Figure 1. Schematic of AE sensors placement and actual PD location

Figure 2. Difference in arrival times of acoustic emission PD signals 

The system of nonlinear equations that govern the AE localization of PD in the test 
tank can be expressed by Equations 1, 2 and 3. These equations were obtained from the 
spherical distance calculations between the actual PD location and the 3 AE sensors, in 
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conjunction with the TDOA principles illustrated in Figure 2 (Liu, 2016; Sinaga et al., 
2012; Veloso et al., 2006). The parameter parameter 𝑣𝑣𝑒𝑒    in these equations represented the equivalent 
speed of sound in oil, which was defined as 1415 m/s (Hashim et al., 2022; IEEE, 2019). 
Conversely, the quantity quantity 𝑇𝑇   in the equations denotes the time taken for the AE signal to 
travel from the actual PD location to the reference sensor S1, which is unknown in this case.

S1, which is unknown in this case. 

 

(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 + (𝑧𝑧 − 𝑧𝑧1)2 = (𝑣𝑣𝑒𝑒𝑇𝑇)2    [1] 

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + (𝑧𝑧 − 𝑧𝑧2)2 = [𝑣𝑣𝑒𝑒(𝑇𝑇 + 𝜏𝜏12)]2  [2] 

(𝑥𝑥 − 𝑥𝑥3)2 + (𝑦𝑦 − 𝑦𝑦3)2 + (𝑧𝑧 − 𝑧𝑧3)2 = [𝑣𝑣𝑒𝑒(𝑇𝑇 + 𝜏𝜏13)]2  [3] 
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To reduce the number of variables to be optimized in the nonlinear loc 

 [3]

To reduce the number of variables to be optimized in the nonlinear localization 
equations, Equations 2 and 3 can be rewritten in the alternative form shown in Equation 
4, whereby whereby 𝑖𝑖 = 2, 3   (Liu, 2016; Ri-cheng et al., 2008; Tang et al., 2008). 

�(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧 − 𝑧𝑧𝑖𝑖)2 −  �(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 + (𝑧𝑧 − 𝑧𝑧1)2 − 𝑣𝑣𝑒𝑒𝜏𝜏1𝑖𝑖 = 0  
�(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧 − 𝑧𝑧𝑖𝑖)2 −  �(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 + (𝑧𝑧 − 𝑧𝑧1)2 − 𝑣𝑣𝑒𝑒𝜏𝜏1𝑖𝑖 = 0   [4]

Equation 4 represents an over-determined situation, which indicates that the precise 
solution is difficult to acquire (Liu, 2016; Liu & Liu, 2014). Hence, the common approach 
is to seek the optimal solution of Equation 4 for AE PD localization (Liu, 2016; Liu & Liu, 
2014). Overall, the mathematical model for the AE PD localization based on the TDOA 
can be summarized as a constrained optimization problem, as shown in Equations 5, 6, 7, 
and 8 (Liu, 2016; Liu & Liu, 2014; Tang et al., 2008).shown in Equations 5, 6, 7, and 8 (Liu, 2016; Liu & Liu, 2014; Tang et al., 2008). 

 

min�𝐷𝐷𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)� =  ∑ ��(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧 − 𝑧𝑧𝑖𝑖)2 −3
𝑖𝑖=2

 �(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 + (𝑧𝑧 − 𝑧𝑧1)2 − 𝑣𝑣𝑒𝑒𝜏𝜏1𝑖𝑖 �  

[5] 

subjected to 

 [5]

subjected tosubjected to 

0 ≤ 𝑥𝑥 ≤ (𝑥𝑥max = 0.40 m)      [6]  

0 ≤ 𝑦𝑦 ≤ (𝑦𝑦max = 0.25 m)      [7] 

0 ≤ 𝑧𝑧 ≤ (𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥 = 0.25 m)      [8] 

 [6] 

subjected to 

0 ≤ 𝑥𝑥 ≤ (𝑥𝑥max = 0.40 m)      [6]  

0 ≤ 𝑦𝑦 ≤ (𝑦𝑦max = 0.25 m)      [7] 

0 ≤ 𝑧𝑧 ≤ (𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥 = 0.25 m)      [8] 

 [7]

subjected to 

0 ≤ 𝑥𝑥 ≤ (𝑥𝑥max = 0.40 m)      [6]  

0 ≤ 𝑦𝑦 ≤ (𝑦𝑦max = 0.25 m)      [7] 

0 ≤ 𝑧𝑧 ≤ (𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥 = 0.25 m)      [8]  [8]

Here, (x, y, z) represents the estimated PD location, (x1, y1, z1) is the coordinate of the 
reference sensor, S1, and (xi, yi, zi) are the coordinates of the other AE sensors. For each 
PD location A and B, 10 combinations of AE sensor positions were used to acquire the 
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AE PD signal. Each combination consists of the coordinates for 3 AE sensors (S1, S2, and 
S3), as shown in Table 1. 

Table 1  
Combinations of sensors for each of the PD locations

PD 
Location

AE Sensors 
Combination

AE Sensor S1 AE Sensor S2 AE Sensor S3

x1 (m) y1 (m) z1 (m) x2 (m) y2 (m) z2 (m) x3 (m) y3 (m) z3 (m)

A
(0.07, 
0.08, 
0.18 m)

A1 0.15 0.10 0.00 0.15 0.05 0.00 0.15 0.15 0.00
A2 0.20 0.10 0.25 0.20 0.05 0.25 0.20 0.15 0.25
A3 0.25 0.05 0.00 0.25 0.15 0.00 0.35 0.10 0.00
A4 0.25 0.05 0.00 0.30 0.10 0.00 0.35 0.15 0.00
A5 0.25 0.15 0.25 0.25 0.05 0.25 0.25 0.10 0.25
A6 0.30 0.15 0.25 0.30 0.05 0.25 0.30 0.10 0.25
A7 0.40 0.05 0.20 0.40 0.10 0.10 0.40 0.15 0.20
A8 0.40 0.05 0.20 0.40 0.15 0.15 0.40 0.05 0.10
A9 0.40 0.15 0.10 0.40 0.15 0.20 0.40 0.05 0.15
A10 0.40 0.15 0.15 0.40 0.05 0.15 0.40 0.10 0.05

B
(0.33, 
0.09, 
0.08 m)

B1 0.00 0.05 0.05 0.00 0.15 0.05 0.00 0.10 0.15
B2 0.15 0.05 0.25 0.15 0.15 0.25 0.05 0.10 0.25
B3 0.20 0.15 0.25 0.20 0.10 0.25 0.15 0.15 0.25
B4 0.25 0.05 0.00 0.20 0.15 0.00 0.15 0.05 0.00
B5 0.25 0.05 0.25 0.00 0.05 0.10 0.15 0.15 0.00
B6 0.25 0.10 0.25 0.15 0.05 0.25 0.15 0.15 0.25
B7 0.30 0.10 0.00 0.15 0.05 0.00 0.10 0.15 0.00
B8 0.35 0.15 0.00 0.40 0.15 0.10 0.35 0.15 0.25
B9 0.40 0.05 0.05 0.20 0.15 0.00 0.00 0.05 0.20
B10 0.40 0.05 0.10 0.35 0.05 0.00 0.15 0.10 0.25

Implementation of Optimization Algorithms for PD Localization
To assess the performance of the ABC for AE PD localization, GA, PSO and BA were also 
applied to solve the same optimization problem for comparative analysis (Chakravarthi et 
al., 2017; Ri-cheng et al., 2008; Tang et al., 2008; Veloso et al., 2006). For each algorithm, 
Equation 5 serves as the objective function for the AE PD localization. Equations 6, 
7 and 8 define a 3-dimensional search space that confines the estimated PD locations 
produced by each algorithm. This confined search space represents the actual dimension 
of the experimental test tank. The AE sensors’ coordinates (xi, yi, zi) and reference sensor 
coordinates (x1, y1, z1) were pre-defined and listed in Table 1. The detailed processes to 
obtain the TDOAs used in this study were outlined in (Hashim et al., 2022). Table 2 
shows the TDOAs for each AE sensor combination in Table 1. The optimal solution for 
each algorithm is the estimated PD location for the given combinations of TDOAs and 
AE sensors’ coordinates.
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Table 2  
TDOAs for the combinations of AE sensors in Table 1

PD Location AE Sensors Combination TDOA, ( ) TDOA, ( )

A
(0.07, 0.08, 0.18 m)

A1 1.237 7.449
A2 1.406 9.943
A3 4.883 54.155
A4 25.420 58.664
A5 1.081 7.774
A6 0.876 6.318
A7 -0.148 5.703
A8 4.459 6.318
A9 1.000 10.000

A10 3.000 15.594

B
(0.33, 0.09, 0.08 m)

B1 5.000 4.000
B2 4.999 54.000
B3 6.000 29.000
B4 34.000 59.000
B5 0.000 5.997
B6 41.000 45.000
B7 75.000 115.000
B8 0.000 61.000
B9 50.000 189.000

B10 8.000 118.000

Genetic Algorithm 

A real-coded GA was implemented for the AE PD localization with reference to (Veloso 
et al., 2006, 2007). Hence, the genes for all 120 chromosomes in the population are real 
numbers. The important parameters that are used in GA are summarized in Table 3. The 
GA started with the random initializations of 120 chromosomes. Each chromosome consists 
of 3 genes representing the (x, y, z) coordinates of the estimated PD locations.

To estimate the PD location for each of the AE sensor combinations in Table 1, the 
coordinates of the 3 AE sensors (xi, yi, zi), along with the corresponding TDOAs in Table 
2 (τ1i), were used as inputs for the GA. The AE PD signals captured by the AE sensors 
during the PD experiment were first denoised by the moving average (MA) technique 
(Hashim et al., 2022; Hashim et al., 2023b). The TOAs of the 3 AE sensors were then 
determined from the denoised AE PD signals based on the first peak method (Hashim et 
al., 2022; Sinaga et al., 2012). These TOAs represent the moments when the AE PD signals 
emitted from the actual PD location arrive at the respective AE sensors. The TDOAs were 
computed based on the concept illustrated in Figure 2. For AE PD localization, the cost 
value for each chromosome was obtained by substituting the 3 genes in each chromosome 
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into the objective function of the GA, given by Equation 5. A total of 500 generations of 
chromosomes were produced. In each generation, 84 new chromosomes were produced 
through the crossovers among 42 pairs of selected parent chromosomes. The probability 
of each chromosome being selected as a parent through the roulette wheel selection was 
computed based on Equation 9, where costi is the cost of the ith chromosome obtained from 
the objective function (Heris, 2015).

(Heris, 2015). 

𝑃𝑃 = 𝑒𝑒−0.8×� 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑖𝑖
𝑤𝑤𝑐𝑐𝑤𝑤𝑐𝑐𝑡𝑡  𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡  𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑒𝑒  𝑐𝑐𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑔𝑔𝑒𝑒𝑔𝑔𝑒𝑒𝑤𝑤𝑚𝑚𝑡𝑡𝑖𝑖𝑐𝑐𝑔𝑔 �    [9] 

The exponential conversion in Equation 9 assigned a higher probability of selection to chromosomes 
with smaller absolute cost values and  

 [9]

The exponential conversion in Equation 9 assigned a higher probability of selection to 
chromosomes with smaller absolute cost values and vice versa. The smaller the absolute 
cost value of a chromosome, the closer the estimated PD location that is represented by the 
genes of the chromosomes to the actual PD location. Furthermore, 36 new chromosomes 
were produced through creep-type mutation of 36 chromosomes in the current generation. 
The mutation operation enabled GA to explore different locations in the test tank for the 
estimated PD location by injecting diversity into the gene pool. Next, the 120 chromosomes 
generated by crossover and mutation operations were merged with the existing chromosome 
population. Elitism was applied whereby only 120 chromosomes with the best cost values 
were retained to constitute the subsequent generation. This selective retention strategy 
ensured that each successive generation of chromosomes comprised estimated PD locations 
with higher probabilities of proximity to the actual PD location. After the elitism process, 
the GA proceeded with the next iteration. The output of the GA was obtained from the 
best chromosome in the 500th generation. The 3 genes of this best chromosome resulted 
in the lowest absolute cost value when substituted into the objective function. It means 
that the estimated PD location (x, y, z) represented by the genes was closest to the actual 
PD location in the test tank. 

Table 3  
Parameters of the GA for acoustic emission PD localization

Parameter Value
Size of the population 120
Maximum number of generations 500
Probability of mutation 0.05
Percentage of offspring produced by crossover (%) 70
Percentage of offspring produced by mutation (%) 30

Particle Swarm Optimization Algorithm

A standard PSO was employed for the AE PD localization based on the methodology 
outlined in (Ri-cheng et al., 2008; Tang et al., 2008). All parameters of the PSO were set 
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the same as in (Ri-cheng et al., 2008; Tang et al., 2008), except for the inertia factor or 
the inertia weight, denoted by w. Initially, the inertia weight was set to 1 and reduced in 
every subsequent iteration based on Equation 10, with the damping factor, 𝑤𝑤(𝑘𝑘 + 1) = 𝑤𝑤(𝑘𝑘) × 𝑤𝑤𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑   , held 
constant at 0.99 (Heris, 2015). The crucial parameters the PSO needs to perform the AE 
PD localization task are tabulated in Table 4. 

Equation 5 was employed as the objective function of the PSO to predict the actual PD 
location within the test tank. The coordinates of the 3 AE sensors (xi, yi, zi) listed in Table 
1 served as the inputs to the PSO. The corresponding TDOAs, listed in Table 2, were also 
utilized as inputs to the PSO to estimate the actual PD location based on Equation 5. In 
each iteration of the PSO, each swarm particle’s velocity and location were updated based 
on the same equations given in (Ri-cheng et al., 2008; Tang et al., 2008). The output of the 
PSO was obtained from the 𝑔𝑔𝐵𝐵𝑒𝑒𝑐𝑐𝑡𝑡   parameter, which was updated whenever a particle found 
an estimated PD location closer to the actual PD location than the previously recorded best 
location. This parameter contained the (x, y, z) coordinates of the estimated PD location 
nearest to the actual PD location, as found by the particles in the swarm.

𝑤𝑤(𝑘𝑘 + 1) = 𝑤𝑤(𝑘𝑘) × 𝑤𝑤𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑    [10]

Table 4  
Parameters of the PSO for acoustic emission PD localization

Parameter Value
Size of particle swarm 120
Maximum number of iterations 500
Initial inertia factor (w0) 1
The damping factor of inertia factor (𝑤𝑤(𝑘𝑘 + 1) = 𝑤𝑤(𝑘𝑘) × 𝑤𝑤𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑   ) 0.99
Personal learning factor (C1) 2

Global learning factor (C2) 2

Bat Algorithm

The AE PD localization based on BA was implemented according to the procedures in 
(Chakravarthi et al., 2017; Yang, 2010).. The important parameters of the BA for AE PD 
localization are summarized in Table 5. The locations of the bats represented the estimated 
PD locations based on BA in the confined search space defined by Equations 6, 7, and 8. 
This confined search space restricted the movements of the bats so that the estimated PD 
locations produced by the BA were always within the test tank. The BA can be regarded 
as a modified version of PSO with additional parameters involved in the search for the 
actual PD location. These parameters included the velocity (vi), pulse frequency (fi), pulse 
emission rate (ri), and loudness (Ai) for each of the bats in the population (Chakravarthi et 
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al., 2017; Yang, 2010). These parameters were computed and updated in each iteration of 
the BA based on the equations provided by Chakravarthi et al. (2017) and Yang (2010). 
Equation 5 serves as the objective function of the BA for AE PD localization. The inputs 
of the BA included the coordinates of the 3 AE sensors (xi, yi, zi) as listed in Table 1 and 
the corresponding TDOAs given in Table 2. The cost value for each bat in the population 
was obtained by substituting the 3 coordinates in the bat’s location into the objective 
function. A small absolute cost value indicates that the bat’s location is relatively closer 
to the actual PD location. Therefore, the bat’s location with the lowest absolute cost value 
in the population represents the estimated PD location closest to the actual PD location in 
terms of the Euclidean distance. The output of the BA was taken from the best bat location 
identified in the bat population over 500 iterations of computation.

Table 5 
Parameters of the BA for acoustic emission PD localization

Parameter Value
Size of the bat population 120
Maximum number of iterations 500
The frequency range of each bat [fmin,fmax] [0, 1.5]

Initial loudness of each bat (A0) 1

Initial pulse emission rate (r0) 0.6
Loudness decay constant (α) 0.9
Pulse emission rate constant (γ) 0.9

Artificial Bee Colony Algorithm

An ABC was implemented for AE PD localization with reference to (Karaboga, 2005; 
Karaboga & Akay, 2009; Kulkarni & Desai, 2016). The bee colony utilized 120 bees, 
divided into 60 employed and 60 onlooker bees. The group of employed bees was tasked 
to search for certain locations within the confined 3-dimensional search space defined by 
Equations 6, 7, and 8 for the actual location of PD. The bee’s location, represented by 3 
coordinates (x, y, z), together with the coordinates of the AE sensors in Table 1 and the 
corresponding TDOAs in Table 2, were set as inputs for the objective function given by 
Equation 5. These TDOAs were computed from the differences among the TOAs of the 
AE PD signals acquired by each AE sensor. 

The output from the objective function was the cost value of the bee. It indicates how 
close the location of a bee is to the actual PD location, whereby the lower the absolute 
cost value of a bee is, the closer its location is to the actual PD location. The onlooker 
bees were employed to perform local searches around the locations of the employed bees 
with higher fitness values. The fitness values of the employed bees were computed based 
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on Equation 11, which assigned a higher fitness value for a bee with a lower absolute cost 
value and vice versa (Kulkarni & Desai, 2016). In Equation 11, fi and ci represented each 
employed bee’s fitness and cost values, respectively. Subsequently, a greedy selection 
process was executed to determine whether to retain the employed bee’s location or 
replace it with the onlooker bee's location based on the proximity of the 2 locations to 
the actual PD location. Each bee in the colony was assigned a crucial parameter known 
as the limit of abandonment (Karaboga, 2005; Karaboga & Akay, 2009). This parameter 
was increased by 1 whenever the greedy selection process resulted in no replacement of 
a bee’s location, and it was reset to 0 once a replacement occurred. Once a bee exceeded 
its limit of abandonment, it was sent out as a scout bee to explore new areas within the 
confined search space to pinpoint the actual PD location. The transition of a bee into a 
scout indicated that the vicinity of the bee’s location was adequately examined, without any 
new location found to be closer to the actual PD location than the bee’s current location. 
In this study, the limit of abandonment for the bees was set to 180 based on Equation 12 
(Karaboga & Akay, 2009), where 𝑁𝑁𝑒𝑒𝑚𝑚𝑑𝑑𝑣𝑣𝑐𝑐𝑦𝑦𝑒𝑒𝑑𝑑  𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐   is the number of employed bees in the 
colony, and D represents the dimension of the AE PD localization problem, which in this 
case is 3. At the end of each iteration, the location of the bee with the lowest absolute 
cost value in the current iteration was compared to the best location identified by the bee 
colony, denoted as 𝑔𝑔𝐵𝐵𝑒𝑒𝑐𝑐𝑡𝑡  . This comparison was made to ascertain if the current best location 
was closer to the actual PD location than the previously established best location, 𝑔𝑔𝐵𝐵𝑒𝑒𝑐𝑐𝑡𝑡  
. Specifically, 𝑔𝑔𝐵𝐵𝑒𝑒𝑐𝑐𝑡𝑡   was updated only if the absolute cost value of the newly discovered 
best location in the current iteration proved to be smaller than that of 𝑔𝑔𝐵𝐵𝑒𝑒𝑐𝑐𝑡𝑡  . The ABC was 
terminated upon completing 500 iterations, and the output was the 3 coordinates (x, y, z) 
of the estimated PD location in the 𝑔𝑔𝐵𝐵𝑒𝑒𝑐𝑐𝑡𝑡   parameter. The important parameters used for 
the ABC are tabulated in Table 6.

le 6. 

𝑓𝑓𝑖𝑖 = �

1
1+𝑐𝑐𝑖𝑖

, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 ≥ 0
1

1+|𝑐𝑐𝑖𝑖|
, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 < 0

      [11] 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 = 𝑁𝑁𝑒𝑒𝑚𝑚𝑑𝑑𝑣𝑣𝑐𝑐𝑦𝑦𝑒𝑒𝑑𝑑  𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐 × 𝐷𝐷     [12] 

 

Table  

 [11]

le 6. 

𝑓𝑓𝑖𝑖 = �

1
1+𝑐𝑐𝑖𝑖

, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 ≥ 0
1

1+|𝑐𝑐𝑖𝑖|
, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 < 0

      [11] 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 = 𝑁𝑁𝑒𝑒𝑚𝑚𝑑𝑑𝑣𝑣𝑐𝑐𝑦𝑦𝑒𝑒𝑑𝑑  𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐 × 𝐷𝐷     [12] 

 

Table  

 [12]

Table 6  
Parameters of the ABC for acoustic emission PD localization

Parameter Value
Size of bee colony 120
Maximum number of iterations 500
Limit of abandonment 180
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PD Localization Analysis

To ensure a fair comparison, all four algorithms employed in this study were carried out 
over 500 iterations with 120 search agents in each population. For each of the estimated 
PD locations, the distance error and the maximum deviation were computed based on 
Equations 13 and 14, respectively (Chakravarthi et al., 2017; Dudani & Chudasama, 2016; 
Liu, 2016). ∆R in Equation 13 represents the distance error between the estimated PD and 
actual PD locations based on the Euclidean distance (Hashim et al., 2022). xact, yact and  
zact in Equations 13 and 14 represent the actual PD location in the test tank, whereas xcal, 
ycal and zcal signify the estimated PD location by each algorithm. The maximum deviation 
is denoted by , as shown in Equation 14. 
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RESULTS AND DISCUSSION

Figures 3 and 4 show the PD localizations based on the GA, PSO, BA, and ABC for PD 
locations A and B, respectively. Each of the estimated PD locations represents the mean of 
20 estimates obtained from 20 independent applications for each algorithm. According to 
the Figures 3 and 4, the estimated PD locations based on ABC are the closest to the actual 
PD location, followed by BA, PSO and GA. 

The ABC consistently demonstrates the highest PD localization accuracy regardless 
of the arrangement of AE sensors and PD locations A and B, as shown in Figures 5(a) and 
5(b). The good balance among the local search mechanism that is provided by the artificial 
onlooker and employed bees and the global exploration process that is managed by the 
scout bees allows the ABC to produce good results for the multi-variable PD localization 
task, with the lowest average distance errors of 0.0481 m for PD location A and 0.0959 m 
for PD location B (Karaboga & Akay, 2009). In terms of Euclidean distance, the average 
distance error for PD location A that the ABC obtained is 37.04%, 55.55%, and 48.61% 
lower than the BA, PSO, and GA, respectively. For PD location B, the average distance 
error that the ABC produces is 32.27%, 43.15%, and 51.61% lower than the BA, PSO, 
and GA. Apart from the ABC, the BA performs better than the GA and PSO for the AE PD 
localization at PD locations A and B, which is a constrained optimization problem (Yang, 
2010). It is evident from Figure 5(a) for PD location A, where the average distance error of 
the estimated PD location by BA is 0.0764 m, which is 29.39% and 18.38% lower than the 
PSO and GA, respectively. Similarly, from Figure 5(b), the average distance error of the 
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estimated PD locations for PD location B by BA is 0.1416 m, which is 16.06% and 28.55% 
lower than the PSO and GA, respectively. The PD localization accuracies of GA and PSO 
show inconsistency for both PD locations A and B, possibly due to the implementation of 
probabilistic modeling to change a part of the existing solutions in the search for a better 
estimated PD location (Karaboga & Akay, 2009; Kulkarni & Desai, 2016). For PD location 
A, the GA demonstrates more effective exploration and exploitation of the search space 
than PSO. The average distance error of the estimated PD locations by GA is 0.0936 m, 
which is 13.50% lower than that produced by the PSO. The PSO showcases a better ability 
to avoid local convergence and better global search ability for the cases of PD location B 
because the average distance error of the estimated PD locations produced by the PSO is 
0.1687 m, which is 14.88% lower than the GA. The PD locations estimated by both the 
GA and PSO for both PD locations A and B are farther away from the actual PD location 
as compared to the ABC, most likely because of the local convergence problem (Karaboga 
& Akay, 2009; Kulkarni & Desai, 2016; Tang et al., 2008). 

GA.  

 

 
 (a) (b) 

   
 (c) (d) 

Fig 
Figure 3. PD localization for PD location A based on (a) GA (red); (b) PSO (green); (c) BA (blue); (d) ABC 
(purple)
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purple) 

 

 
 (a) (b) 

 
 (c) (d) 
Figure 4. PD localization for PD location B based on (a) GA (red); (b) PSO  

Figure 4. PD localization for PD location B based on (a) GA (red); (b) PSO (green); (c) BA (blue); (d) ABC 
(purple) 

(Karaboga & Akay, 2009; Kulkarni & Desai, 2016; Tang et al., 2008).  

 
(a) (b) 

Figure 5. Distance errors of t 
Figure 5. Distance errors of the estimated PD locations by GA, PSO, BA, and ABC for (a) Location A and 
(b) Location B
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The maximum deviations of the estimated PD locations based on the ABC for PD 
location A are between 0.019 m and 0.069 m, as shown in Figure 6(a). For PD location B, 
the maximum deviations of the estimated PD locations based on the ABC are from 0.026 
m to 0.179 m, as illustrated in Figure 6(b). Based on the BA, the maximum deviations of 
the estimated PD locations are from 0.025 m to 0.108 m for PD location A and from 0.038 
m to 0.207 m for PD location B. The maximum deviations of the estimated PD locations 
based on the PSO are between 0.061 m to 0.131 m for PD location A and between 0.062 
m and 0.232 m for PD location B, as depicted in Figures 6(a) and 6(b). For PD location 
A, the maximum deviation range for the estimated PD locations based on the GA is from 
0.046 m to 0.143 m. On the other hand, for PD location B, the maximum deviation range 
for the estimated PD locations based on GA is from 0.044 m to 0.261 m. For PD location 
A, the average of the maximum deviations of the estimated PD locations produced by the 
ABC algorithm is 0.0387 m, which is 38.77%, 57.14%, and 51.38% lower than the BA, 
PSO, and GA. For PD location B, the average value of the maximum deviations of the 
estimated PD locations based on the ABC is 0.0818 m, which is 37.70%, 47.53%, and 
48.23% lower than the BA, PSO, and GA. These findings indicate that the estimated PD 
locations produced by the ABC deviate less from the actual PD location as compared to 
the BA, PSO, and GA. This consistency in the average of the maximum deviations aligns 
with the findings of the average distance errors, which highlight the good accuracy and 
reliability of the ABC for PD localization as compared to the other algorithms.   

algorithms.    

   
 (a) (b) 

Figure 6. Maximum deviati Figure 6. Maximum deviation of the estimated PD locations by GA, PSO, BA, and ABC for (a) PD 
Location A and (b) PD Location B

The average computation times for the GA, PSO, BA, and ABC to estimate the PD 
locations for PD location A are presented in Figure 7(a). Each average computation time 
in Figures 7(a) and 7(b) represents the mean value of 20 computation times for each AE 
sensor combination. The average computation time for the ABC is the shortest, with an 
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average of 0.7556 s. For PD location A, the average computation time by BA is 0.88 s, 
which outperforms GA, with 1.1509 s and PSO, with 0.9195 s. A similar trend is observed 
in Figure 7(b) whereby for PD location B, the average computation time for ABC is the 
fastest with 0.7713 s followed by BA, PSO and GA with 0.8965 s, 0.9375 s and 1.1486 
s, respectively. Overall, the ABC takes the shortest time to estimate the PD locations for 
both PD locations A and B. For PD location A, the average computation time of the ABC 
is 14.13%, 17.83%, and 34.35% faster than the BA, PSO, and GA. For PD location B, 
the average computation time of the ABC is 13.97%, 17.73%, and 32.85% faster than the 
BA, PSO, and GA. The ABC’s fastest average computation time to obtain an estimated 
PD location is probably attributed to its inherent advantage. This advantage stems from 
the fact that ABC has only 1 control parameter, which is the limit for abandonment. In 
comparison, other algorithms such as GA, PSO, and BA have at least 2 parameters to be 
updated for the computation (Karaboga & Akay, 2009). 

   
 (a) (b) 

Figure 7.  
Figure 7. The average computation time of GA, PSO, BA, and ABC for (a) PD Location A and (b) PD 
Location B

CONCLUSION

In conclusion, it is found that the ABC outperforms the BA, GA, and PSO in AE PD 
localization regardless of the AE sensor arrangements and PD locations within the test 
tank. The distance errors between estimated and actual PD locations by ABC range from 
0.0202 m to 0.0831 m for PD location A and from 0.0300 m to 0.1875 m for PD location 
B, representing the smallest errors obtained in the study. The high PD localization accuracy 
of the ABC is attributed to its effective search mechanism, which balances local search by 
onlooker bees with global exploration by scout bees. The ABC exhibits the shortest average 
computation time to estimate the PD locations in 500 iterations by optimizing the nonlinear 
localization equations. This is likely due to the algorithm’s inherent advantage of requiring 
only one control parameter. The BA performs better than the GA and PSO, with relatively 
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lower distance errors for AE PD localization and shorter computation time to obtain the 
estimated PD locations. GA and PSO show inconsistency in PD localization accuracy, but 
the average computation time needed by the PSO to give estimated PD locations is shorter 
than that of the GA. While the ABC shows promise in AE PD localization, its performance 
might vary with different types and levels of noises or interferences during on-site testing. 
Future studies could address this by testing the algorithm under different noise conditions 
and more complex scenarios, such as accounting for the effect of temperature, moisture 
and pressboard.
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